Drum Tuning without RESOTUNE

Drummers managed to tune and play drums before we had all these electronic gadgets. We appreciate that many drummers are not ready to embrace high technology tuning solutions like  RESOTUNE so lets review the rest of the options.

Traditional old school tuning by ear that many drummers still swear by, causes others to just swear because it is not easy to do well. Tuning by ear is what we call “Tap Tuning”. You tap around the drumhead rim edge with a drumstick, while listening for the pitch the drum makes in response. By adjusting each lug to make the same note when tapped nearby, you can attain a degree of lug matching.

Here is a link to a web article written by a friend describing  “tap-tuning” .

For decades this was not only the state of the art, it was the only art. Tap tuning suffers from adjacent lug tension interaction, so each lug affects it’s neighbor’s pitch and a specific tensioning pattern must be followed to avoid chasing your tail around the drumhead as adjusting adjacent lugs changes the tune of the lug you just trimmed. By following an alternating pattern of skipping across the drumhead each time has a much better chance of converging on a stable pitch from all the lugs.

If you rest your finger on the exact middle of the drumhead, it will damp the fundamental note resonance, and make the lug overtone pitch easier to hear. This gentle pressure can slightly increase head tension and cause a small tuning pitch error. Another technique associated with tap tuning to suppress the fundamental note is to sit the drum on the floor or a flat surface like a table. If two heads are mounted, this acoustically couples the bottom head (which is part of the fundamental note vibrating system) to the flat surface. With no bottom head in place this closes off the air cavity within the shell, damping the fundamental. A flat surface physically close to the opposite head, acoustically couples to it and changes the effective mass slightly which will shift the fundamental pitch lower, but will not significantly alter the pitch of the higher lug resonance. This floor damping technique should be more accurate and repeatable than using your finger to damp the fundamental note.

There can be other errors associated with tap tuning related to how hard and exactly where you hit on the drumhead surface, not to mention that at best you are matching only the one resonant note, so higher resonance modes may not be well matched. Skilled by-ear tuners don’t stop after an initial lug pitch match, but listen for head “clear quality” while still tweaking. There is no easy advice we can give about how to clear by ear without lots of practice. First you have to know what it sounds like, than listen very carefully while hitting the un-damped drum at different spots on the drumhead and use very tiny incremental trial and error adjustments, after you already have tuned the lugs to make the same pitch when hit nearby.

The earliest attempts to use technology to assist frustrated drummers lacking the skills or patience to tap-tune effectively, applied mechanical measurement tools to impute the state of drum tune indirectly from mechanical parameters like lug torque or drumhead tension (actually drumhead deflection measured with a standard mass resting on it). In a perfect world, with perfect knife edges, perfectly round drums, and perfect hardware, these mechanical tuning systems would tune perfectly too. However in our imperfect world, with real drums, these mechanical tuners don’t work perfectly. If you think about it, it is like trying to tune a guitar by pulling on each guitar string one at a time with a pull scale and trying to predict the note pitch from how tight or how much the string stretches.

These mechanical tools can’t determine the pitch very accurately, let alone clear drumheads but they are not without value. Should you ever have to change heads back-stage, in a loud noisy space, with a bass player a few feet away jamming, lug torque or head tension tuning will get you closer than just guesswork. Mechanical tuning aids can be useful for rough or coarse tuning after changing heads, and before final tuning with more precise techniques. In practice tap tuning can give a better end result than mechanical tuning aids because you are listening to the actual sound the drum is making, not some indirect measurement that “should” give a good result. 

Recently electronic technology has given us inexpensive “note sniffers” to assist tap tuners who don’t have the hearing skills, perfect pitch, pitch memory, and patience to tune with ears alone. These electronic sniffers provide the appearance of precision and accuracy, while they still depend on manually striking the drumhead at exactly the same distance from each lug every time, and can suffer the same issues and errors as tap tuning does related to convergence and repeatability. Another source of error is the fact that drum pitch changes slightly immediately after the initial hit, and changes more more the harder you hit. For accurate note sniffing you must hit with identical force, and repeatable electronic sampling is important. Like indirect tuning, in theory these are wonderful. In practice results can be a little variable. They should be more accurate for targeting the actual pitch a drum makes (than mechanical tuners). Clear quality is not directly measured by these note sniffers. In an ideal world making the lug note the same pitch when tapped by each lug exactly the same “should” result in a clear drum.

I asked an experienced by-ear tuner, who was given a competing electronic note sniffer as a gift by his girlfriend last Christmas, to compare his new electronic note sniffer to RESOTUNE II. His actual comments are posted elsewhere on our web site. In short, he still had to clear his drum by ear after tuning with the popular electronic note sniffer.

For good general advice about drum tuning/voicing check out the “drum tuning bible” , a classic. 

Technology Serving Art